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screw compressor and can be probably the sources of noise. Therefore it is necessary to ana-
lyse the fluid flow through the sealing gap in the screw compressor. In this paper a numerical
computation of the steady state compressible inviscid fluid flow through the two-dimensional
model of the sealing gap in the screw compressor is shown.

2 Numerical simulation of fluid flow through the sealing gap

2.1 Formulation of the problem

Let us consider the sealing gap between the stator and the head of the female rotor tooth, Fig. 1
and Fig. 2, and accept the following restrictions. We will assume that the female rotor does not
move and that the sealing gap can be simulated by a two-dimensional bounded domain @ ¢ ®*
occupied by the compressible inviscid fluid with the boundary 92 = 9€2; U 9Q0 U 0wy, where
982 is the inlet and <, the outlet section of the computational domain Q. Sy are fixed
impermeable walls of the domain corresponding to the stator and the head of the female rotor
tooth. The steady state solution of the compressible inviscid fluid flow through the sealing gap

in the screw compressor is chosen.

Fig. 1: Frontal section of rotors, 6 — female rotor-

housing gap Fig. 2: Detail of female rolor-housirjg gap
Bild 1: Stirnschnitt der Rotoren, 6 — Nebenrotor-  Bild 2: Detail des Nebenrotor-Gehause-
Gehausespalt spaltes

2.2 Mathematical model of compressible inviscid fluid flow

The mathematical model of the two-dimensional compressible inviscid, non-heat-conducting
fluid flow is described by the conservative system of the Euler equations, expressed in Eulerian
description. In Cartesian coordinates the conservative system of the Euler equations can be
written as

ow 4 of (w) : dg(w)

& (1)
oL dx dy
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The vector of conservative variables w and Cartesian flux components f(w) and g(w) of the
inviscid flux H(w) = (f(w), g(w)) are defined as

w (g, ou, pv, (:) ! .
flw) = (gu, 9“2 + p, puv, (e + p)u)vl., (2)
glw) = (v, puv, ov? +p, (c+4 p)u)y.,
where t is time, p is density, p static pressure, ¢ total energy per unit volume and v — (u, v)!is
the velocity vector. The external volume forces are neglected.
The conservative system of the Euler equations (1) — (2) has to be completed with an
equation of state p = p(p, ') defining the thermodynamical properties of the considered fluid.
In the case of a perfect gas the equation of state can be written as

p=prT, (3)
where r = 287 J kg 'K !is the gas constant per unit of mass. The following relations are valid
T =65 — Cus K 2 =14, (4)

where ¢, and ¢, are the specific heats at constant pressure and volume, respectively. The
ratio of specific heat coefficients « is so called Poisson’s constant. From the thermodynamical
analysis of continua is known, that the total energy per unit volume ¢ of a system is the sum of
its internal and its kinetic energy

1 . g
e = pe+ 20(u1 +v?). (5)

The internal energy per unit of mass ¢ is a state variable of a system and for perfect gas is
defined as ¢ = ¢,1', where T' is thermodynamic temperature. The constitutive relation for static
pressure p can be obtained, using the equations (3) - (5), in the form

p=lKr— l)[(’ %y(’u'z l 772)} : (6)

2.2.1 Boundary conditions

The conservative system of the Euler equations (1) — (2) is, for example [5] or [2], quasi-
linear and hyperbolic for each vector of conservative variables w. The number of the boundary
conditions which have to be prescribed on the boundary of the computational domain §2 ¢ R? is
known from the theory of the hyperbolic equations. In our case of the two-dimensional sealing
gap, when we assume the flow with subsonic inlet and subsonic outlet, we prescribe in the inlet
section 992, of the domain three physical boundary conditions:

« the inlet stagnation pressure py = 2 - 10° Pa,
« the inlet stagnation temperature 7, = 293.15 K,

« the inlet angle «, which has to be computed from the geometry of the gap.
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In the outlet section d§2o we prescribe one physical boundary condition:

« the outlet static pressure p, = 10° Pa.

On the solid impermeable walls of the domain 952y the boundary condition v*n = 0 has to be
satisfied, where n is the outward unit normal vector to the boundary 2y .

2.3 Numerical solution of the system of the Euler equations

For the discretization of the conservative system of the Euler equations (1) — (2) the cell-centred
finite volume method on a structured quadrilateral grid, Fig. 3, was used.

| S —— S " —
o “a = ©

= a

Fig. 3: Geometry of the sealing gap with a structured quadrilateral grid (128 x 10 cells)
Bild 3: Geometrie des Gehausespaltes mit einem viereckigen Gitter (128 x 10 Zellen)

In the finite volume method, nowadays very
popular discretization technique for the Euler
equations, the computational domain 2 ¢ ®?
is subdivided into a finite number of small, non-
overlapping, quadrilateral control volumes €;;
with the boundary 99;;, Fig. 4, that cover the
whole computational domain §2. Let us consider
a partition 0 < ¢y < t; <ty < ... < T of the
time interval (0,7 ) and set At =t — ty.

On the control volume §;; shown in Fig. 4,
the exact solution w(y, t,,) at time t,, is appro-
ximated by a piecewise constant function wi,
which should be considered as an approxima-
tion of the mean value of the exact solution
w(y,t,) over the cell ©;;

no~
Y o 2,

where [$2;;| denotes the face area of the cell i

S
Ay [22,52]

Ay (23, 3]

It As = Ay [z1,0]

v()
l Au [z4,y4]
b

Sy

20

Fig. 4: Control volume 2,
Bild 4: Kontrollvolumen €2;;

w(y, tn)dy , (7)

. The value of the approximate solution w,
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is associated to the centre (i, ;) of the cell ;. The finite volume discretization of the Euler
equations is based on the integration of the conservative system (1) over the set £, x (,,, ty 1 1)-
Using the Gauss-Ostrogradski's theorem we obtain

/ (w(y,tni1) — w(y, ty))dy + At H(w(y,tn)) mijdS = 0, (8)

0 Joq,
where n;; = (“n,;, Yni;)" denotes the outward unit normal vector to the boundary 952, of the

cell Q;; and H(w(y,t,)) - nij = f(w(y,ta)) “ny + glw(y, ty)) Yny;. The equation (8) can be
approximated on the control volume €2;;, Fig. 4, by a finite volume scheme

n+l _ B
Wy = 1] ISZU' L Hm S, (9)

m=1

where H\,(w) — (f,(w), gi,(w)) is the inviscid numerical flux through the edge I'}} of the
cell ©;; attime t,, Fig. 4, and S,,, = (S, , Si)" is the cell side normal vector to Ihe edge L.
According to Fig. 4 we designate S, = S, ; J,Sz =8;,1.,5= 5, 37 and S; = 5, 1

The aim of the numerical simulation is to obtain the steady state numerical solution of the
conservative system of the Euler equations (1) — (2) in the space-time cylinder Q- = §2 x (0, 7).
We find the steady state solution with using the stationary boundary conditions mentioned in
subsection 2.2.1 by means of a suitable time marching method for time ¢ —» oo. For the
numerical solution of the conservative system of the Euler equations (1) — (2) we used the
cell-centred finite volume formulation of the Causon's simplified TVD MacCormack scheme on
an arbitrary structured quadrilateral grid, proposed in [1].

The classical explicit two-step MacCormack scheme approximates the finite volume scheme

(8) in the following way

1
n+ts n

2 Wy
w,] 2 = Wy m |(fﬂl_1 16,,1 |g,;1] ” J + f,]”Sl]') Ig,]lls .1 {
n Qg ol L Q. 1
+ FSE 1 ¥ ;958 3t LK ! +g,jb ;), (10)
At n+t 3

1 vt s L n+ 3 n+x
n+l _ & 3 "

wi‘] = z{w &w S m—] [f,-j 287 1 g, ‘51/»1 + £y S e f

nt} n+ nid g n+ nty oy

+ gl iYL 587 LISy 15’ Vgl l,.su 2]} (11)

It is well known, that the classical explicit numerical methods of the second-order accuracy,
such as Lax-Wendroff or MacCormack schemes, generate high-frequency oscillations around
sharp discontinuities. In order to stabilize the numerical solution in the shock region some
artificial viscosity is needed. In our case, after the predictor (10) and corrector (11) steps of the
finite volume formulation of the explicit MacCormack scheme, we add the TVD-type viscosity
terms duw; and dw?; to the numerical solution w},'!

T n+l .
(VD) wii' = w nH + dw + a'u;,] ; (12)

where V”’w" "is the corrected numerical solution at time ¢, ;. For the Causon’s simplified
TVD MacCormack scheme on an arbitrary structured quadrilateral grid the added dissipative



160 VDI-BERICHTE

term dw can be written in the form, for example [5] or [1]

1 _pt - i - ’
dwy; = [P + Pryyl(wiyy; — wi) = [PLy; + Pylwl — wiyy), (13)
; 1 5
Pj = P(r) = 5C(wy)[1 - o(rd)], (14)
ik (i 1y Eil ,,“: w‘,,ll) R = (7211; wi ijo ‘wu w:l lJ)
o (wh gy - wiiwl g w”) U (wl - wilg wl —wily)

Note that in these relations (-, -) denotes the scalar product of two vectors. The functions 4)(:~,‘])
and C(r;) in the relation (14) are defined as

min(2r$‘1) pro 1'1'] >0 ) { vij(1 = vij) pro vy <3
v5) =

4’(7‘] ) =
0.25 pro v > i

1) 4
0 pro 7 < 0

For v;; can be written the following formula

t

= e (i) + a33), (15)
vij By (|| + aij)

where w;; is the velocity in the direction 7 and a;; is the local speed of sound. The time step At

is given by the CFL condition (18) and Az;; and Ay;; are the approximations of the lengths of

the cell ©2;; in the directions i and j computed as
2|$2,j| 2921 _ (16)

Az Ty =T . a1 Ayl = T
b= ISM 3 | })l 4 ISU)’ -5

il

For the added dissipative term (lw we use similar formulae with the change of index ;.

2.3.1 Convergence and stability of MacCormack scheme

The finite volume formulation of the Causon’s simplified TVD MacCormack scheme (10) — (12)
works as an iterative process, where an initial condition wy; has to be given. The convergence
of the iterative process is measured by a residual which is computed as the discrete L, norm
of the time derivative of density

+1
Sy 1] (Bat)" )
Rez = ————— . (17)
24 1821
To describe the convergence history of the iterative process we plot a graph of the decimal
logarithm of the values Rez in dependence on the number of iterations n. The iterative process
will be stopped when Rez is less than a pre-selected value . It means that the steady state so-
lution of the conservative system of the Euler equations (1) — (2) is reached when the condition
Rez < ¢ is fulfilled.

A necessary CFL condition for the stability of the explicit two-step MacCormack scheme is

expressed by the restriction for the time step

At < min [ —— (;,FAL»_‘,,_ ; (18)
(i7) [_1[ Jl lvigltayg

Ayiy
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where |u;| + a;; and |v;;| + a;; are the maximum absolute values of the eigenvalues of the
Jacobian matrices A = df(w)/0w and B = dg(w)/0w for the case of Euler's equations,
CFLe (0,1) and Az;; and Ay;; are defined in (16).

3 Numerical results

The precise geometry of the sealing gap between the stator and the head of the female rotor
tooth on a millimetre scale, filled with a structured quadrilateral grid can be seen in Fig. 3. For
the numerical computation of the steady state fluid flow through the female rotor-housing gap
the relatively fine structured grid with 1300 x 50 quadrilateral cells was used. Fig. 5 displays
the Mach number profiles along lower (plotted with full line) and upper (plotted with dashed
line) walls of the sealing gap computed with the above described cell-centred finite volume
formulation of the explicit two-step Causon'’s simplified TVD MacCormack scheme after 381 200
iterations. It can be seen from Fig. 5 that the inlet Mach number is about M; = 0.456. The
constant CFL in the necessary CFL condition (18) for the stability of the MacCormack scheme
was chosen as CFL= 0.5. The Causon’s simplified TVD MacCormack scheme converges
poorly towards the stationary solution (Rez ~ 10 ?).

B

251
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-8 -6 4 -2 0 2 4 6 8 10

Fig. 5: Mach number profiles along lower and upper walls of the female rotor-housing gap
Bild 5: Mach-Zahlverlauf langs der unteren und oberen Wand des Gehausespaltes

In Fig. 6, the isolines of the Mach number in the two-dimensional model of the female rotor-
housing gap of the screw compressor are shown. The isolines are plotted with AM = 0.04.
From Fig. 5 and Fig. 6, we can observe a subsonic region in the inlet part of the sealing
gap up to the circular arc obstacle which represents a sealing strip. Above the circular bump
the Mach number grows and the subsonic region changes to supersonic one, which occurs
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in the part of the sealing gap behind the circular arc obstacle. First shock is obtained as the
flow reaches the end of the circular bump. This shock is reflected from the upper and lower
walls. The supersonic region is terminated by another shock obtained at the position where the
female rotor-housing gap enlarges. The outflow is again subsonic.

61.5 1 gT— T —_ T 1 -7 — T T T
61
60.5 |- = |
60| [ |
59.5 [/ o :<'//,,/,»/ s
58.5
58
57.5 L e GE— — 1 frins S y S— A 1
8 6 a 2 ) 2 a 6 8 10

Fig. 6: Isolines (contours) of the Mach number in the female rotor-housing gap (AM = 0.04)
Bild 6: Verteilung der Machzahl (Machzahlkonturen) im Gehausespalt (AM = 0.04)

In Fig. 7 and Fig. 8, the results of the numerical simulation of the compressible inviscid fluid
flow in the sealing gap gained by using the software package Fluent 5.3 are presented. The
numerical calculation was done for the same geometry of the female rotor-housing gap, Fig. 3,
for the same boundary conditions described in subsection 2.2.1 (operating pressure = 0 Pa,
inlet gauge total pressure = 2. 10° Pq, inlet total temperature = 293.15 K, inlet direction spe-
cification method = normal to boundary, outlet gauge pressure = 10° P’a) and on the same
structured quadrilateral grid with 1300 x 50 cells. For the discretization a second order upwind
scheme with Courant number = 0.5 was chosen.

Fig. 7 displays the Mach number profiles along lower and upper walls of the sealing gap
after 75000 iterations. In Fig. 8, the isolines of the Mach number in the two-dimensional model
of the female rotor-housing gap of the screw compressor are shown. This numerical calculation
converges very bad towards the stationary solution.

When we compare the numerical results of the steady state compressible inviscid fluid
flow through the sealing gap obtained by means of the Causon’s simplified TVD MacCormack
scheme, Fig. 5, with the numerical results gained by using the software package Fluent 5.3,
Fig. 7, we can see that these results are generally in good agreement (the same inlet Mach-
number M, = 0.456 and the similar supersonic region behind the circular bump). Only one
difference can be observed. Namely, the different values of the maximal Mach number on the
lower and upper walls at the position, where the female rotor-housing gap enlarges.
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Fig. 7: Mach number profiles along lower and upper walls of the female rotor-housing gap
Bild 7: Mach-Zahlverlauf langs der unteren und oberen Wand des Gehausespaltes
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Fig. 8: Isolines of the Mach number in the female rotor-housing gap
Bild 8: Verteilung der Machzahl im Nebenrotor-Gehausespalt
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In [6] we presented the results of the numerical simulation of the compressible inviscid fluid
flow through the female rotor-housing gap obtained by means of the cell-centred finite volume
formulation of the explicit two-step MacCormack scheme with Jameson'’s artificial dissipation on
the structured quadrilateral grid with 700 x 30 cells. The numerical test was done for the different
geometry of the sealing gap (h = 0.6 h,, see Fig. 2) and the following boundary conditions were
prescribed:

 the inlet stagnation pressure py = 5 - 10° Pa,
« the inlet stagnation temperature 7j = 373.15 K,
« the inlet angle «, which has to be computed from the geometry of the gap,

the outlet static pressure p; = 10° Pa.

Fig. 9 displays the Mach number profiles along lower and upper walls of the female rotor-
housing gap. It can be seen that the inlet Mach number is about M; = 0.243. The Courant
number was chosen in this case as CFL= 0.4. The MacCormack scheme with Jameson's
artificial dissipation converges also very bad towards the stationary solution.

A G - =T —_— = v
25 1
Upper wall
Lower wall
2F
1.5 3]
1k 1
05 7
o ——— L L n s " L n \/
-8 -6 -4 -2 o 2 4 6 8 10 12

Fig. 9: Mach number profiles along lower and upper walls of the sealing gap (h = 0.6 hy)
Bild 9: Mach-Zahlverlauf Iangs der unteren und oberen Wand des Gehdusespaltes

In Fig. 10, the isolines of the Mach number distribution in the sealing gap are shown.

When we compare the numerical results illustrated in Fig. 5 and Fig. 6 with the numerical
results from Fig. 9 and Fig. 10, we can see the influence of the sealing gap geometry and
of boundary conditions on the steady state compressible inviscid fluid flow through the two-
dimensional model of the female rotor-housing gap in the screw compressor.
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58 -

Fig. 10: Isolines (contours) of the Mach number in the female rotor-housing gap (h = 0.6 i)
Bild 10: Verteilung der Machzahl (Machzahlkonturen) im Gehausespalt (b = 0.6 h,)

Abstractedly from our numerical computations, the experiment was performed at the Tech-
nical University of Dortmund, see [3]. In Fig. 11, a Schlieren picture of a gas flow in a two-
dimensional model of the male rotor-housing gap of the screw compressor is presented. The
Schlieren picture has been made for the pressure ratio pei,/paus — 2 and the height of the
sealing gap is h = 0.4 mn.

Fig. 11: Schlieren picture of the male rotor-housing gap, TU Dortmund
Bild 11: Schlierenaufnahme des Hauptrotor-Gehausespaltes, TU Dortmund

The flow visualisation gives a qualitative overview about the gas flow behaviour and it is
useful in its characterisation. With regard to the large similarity of the female rotor-housing gap
geometry used for our numerical simulation and of the male rotor-housing gap geometry used
by the experiment and because of the same pressure ratio (po/p2 — 2 and pein/pPaus = 2), We
can confront our numerical results of the steady state compressible inviscid fluid flow, illustrated
in Fig. 6, with the Schlieren picture from Fig. 11. It can be seen in both cases that the first shock
wave, which occurs at the end of the sealing strip, is reflected from the upper and lower walls of
the gap. So, we can deduce that our numerical results proportionally agree with the experiment.
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4 Conclusions

In this paper the numerical simulation of the steady state compressible inviscid fluid flow through
the two-dimensional model of the female rotor-housing gap in the screw compressor is pre-
sented. The obtained numerical results give us the first idea about the character of the gas
flow through the sealing gap with the fixed lower wall which simulates a simplified situation
when the female rotor does not move. It has been shown that the character of the gas flow
through the gap highly depends on the precise geometry of the real sealing gap of the screw
compressor and on the choice of the boundary conditions, which have to be prescribed on
the boundary of the computational domain. All numerical methods which were used for the
numerical simulation in this paper coverge very bad towards the stationary solution.

Itis necessary to mention that the problem of the gas flow through this narrow channel has
to be solved by using the compressible viscous flow model. That is the reason that one can
expect a fluid flow separation behind the circular bump. The aim of our further research in this
area is to analyse the compressible viscous fluid flow through the female rotor-housing gap of
the screw compressor. For the precise solution of this problem it would be very desirable the
numerical simulation and an experiment for the same conditions to perform.
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