Contact of screw machine rotors under operate loading

Ass. Prof. J. Švígler, University of West Bohemia, Pilsen;
Ing. V. Machulda, University of West Bohemia, Pilsen;

Abstract

Rotors of a liquid injected screw machines create a pair of conjugate screw surfaces that touch mutually. Force and temperature loading of the screw machine housing causes a change in an arrangement of the rotor axes. An originally parallel ordering changes into a space arrangement with the skew axes. This change causes a variation of the character contact of tooth surfaces. The curve contact degenerates into the point contact. The change of the surface contact produces another phenomenon such as arise of undesirable gaps between tooth surfaces, change of the gear ratio and static and dynamic stress of surfaces. Presented contribution analyses the incorrect contact of screw surfaces of the rotors in detail. Problem is solved as a three-dimensional case.

1. Introduction

Screw machines with liquid injection into the compressed gas, which operate with high pressure differences, are heavily loaded by axial and radial forces [2], [3], which are transferred to the housing by the bearings. The contact force between the rotors Fig. 1, play an important role in screw machines with direct rotor contact. The contact force is relatively

Fig. 1 Screw machine rotors smaller in the case of a main rotor driven compressor. In the case of a gate rotor drive the contact force is substantially larger and this case, which comes into account by screw expanders, is excluded from our consideration. This statement is valid for a curve contact of rotor tooth surfaces which are located in a theoretical, unloaded, position. In the case of a point contact the contact force is substantially larger. The curve contact changes in the contact at the point in a housing distortion when an originally parallel position of rotor axes changes in a space arrangement with skew axes. The distortion is caused by the force and temperature fields and by an
operational vibration. Decesive influence on the housing distortion has the temperature field. An aim of this works is to determine the contact point of the tooth surfaces in an operate state in which the axes of rotors are skew. As a logical consequence of a change the curve contact in the point contact a change in the contact force an a gear ratio is shown. Own deformation of the screw rotors, consist in a force and temperature deformation [5] namely, is not involved into our solution.

2. Housing and rotors operational distortion

The force field of a screw compressor, which is considered at four time levels I, II, III, IV, before an opening of a discharge, determined by the angle $\varphi_{3}=\left\langle 0^{\circ}, 18^{\circ}, 36^{\circ}, 54^{\circ}, 72^{\circ}\right\rangle \wedge 0^{\circ} \equiv 72^{\circ}$, of a rotary motion of the main rotor is given by pressure in chambers [3]. The value $\varphi_{3}=0^{\circ}$, which conforms to the time level I and determines the beginning of the discharge, corresponds to a value of the angular displacement $\varphi_{30}=21,4^{\circ}$ from the starting position of rotors, Fig. 12. Separate working spaces with corresponding pressures in MPa for $\varphi_{3}=0^{\circ}$ are marked in Fig. 2. Gas compression is described by adiabatic

Fig. 2 Simplified model of screw machine housing with marked work spaces changes $p V^{\kappa}=$ const., $\kappa=1,4$. Numerical solution was carried out for following geometric parameters: axes distance $a_{w}=85 \mathrm{~mm}$, gear ratio $i_{32}=1,2$, helix angle on the rolling cylinders $\gamma=45^{\circ}$ and the length of a tooth part of rotors $I=193,8 \mathrm{~mm}$. The force field consist in a set of force and couple in nodes L_{k} of considered rotor axis, Fig. 3, is defined with relations $\mathbf{F}_{K}=\sum_{i=1}^{3} \mathbf{F}_{K_{i}}, \mathbf{M}_{K}=\sum_{i=1}^{3} \mathbf{M}_{K_{i}}$, where $\mathbf{F}_{K_{i}}, \mathbf{M}_{K_{i}}$, are results of the pressure on an elementary are a i of surfaces transformed in a node k of the rotor axis. Resultant of the elementary force effect, which is given with expressions $\mathbf{F}=\sum_{k=1}^{3} \mathbf{F}_{K}, \mathbf{M}=\sum_{k=1}^{n} \mathbf{r}_{K} \times \mathbf{F}_{K}$, are transferred to the housing by the bearings [3].

Fig. 3 Force effects on surface element

The temperature field was obtained by measurement and estimation. The distribution of the temperature field acting to the housing is presented in Fig. 4. Lower values was measured on the housing surface and upper values, which belong to the inner surface of the housing, were determined by estimation according to measured temperature of rotors. The distribution of the temperature field is constant along circumference in the frontal plane which is perpendicular to the rotor axes. A temperature measurement of rotors was made on the oil injected screw compressor [5], [6]. Temperature sensor was applied to rotors through drilled openings in the housing wall. Temperature distribution along the length of rotors is considered, see Fig. 4, according to a straight line. In a radial direction the temperature distribution is according to the straight as well. Force and heat housing deformation was determined separately using the software ANSYS and MSC.Marc. The total displacements of

Fig. 4 Temperature field
bearing centres are presented in Tab. 1, [3], for position of rotor that is given by the angle of rotation $\varphi_{3}=0^{\circ}$ of the main rotor that corresponds to the situation just before the opening of
discharge. In this notation A determines bearing centres on the frontal and B on the back side of the housing.

Table 1: Displacement of bearing centre for $\varphi_{3}=0^{\circ}$

Components	$\mathbf{r}_{\mathbf{A} 3}$	$\mathbf{r}_{\mathbf{B} 3}$	$\mathbf{r}_{\mathbf{A} 2}$	$\mathbf{r}_{\mathbf{B} 2}$
	$[\mu \mathrm{~m}]$			
Total displacement				
x	28,642	36,142	31,449	23,826
y	$-10,600$	$-16,060$	18,155	22,691
z	$-55,597$	54,396	$-52,132$	55,134

A visualization of total bearing displacements in four time levels $\mathrm{I}, \mathrm{II}, \mathrm{III}, \mathrm{IV}$ is shown in Fig. 5, 6.

Fig. 5 Displacement of bearing centres situated on frontal side

Fig. 6 Displacement of bearing centres situated on back side

3. Rotors in theoretic position

Tooth surfaces of the main and gate rotor create, Fig. 7, two conjugate surfaces where creating surface σ_{2}, which is defined [4] by parametric equation

Fig. 7 Creating of conjugate tooth surfaces σ_{2} and σ_{3}

$$
{ }_{R_{2}} \mathbf{r}_{L}^{\sigma_{2}}\left(\psi_{2}, \chi\right)=\left[\begin{array}{c}
r_{S} \sin \left(\phi+\psi_{2}\right)-r_{K} \sin \left(\chi+\psi_{2}\right) \tag{1}\\
-r_{S} \cos \left(\phi+\psi_{2}\right)+r_{K} \cos \left(\chi+\psi_{2}\right) \\
\delta_{2} \\
1
\end{array}\right]
$$

where ${ }_{R_{2}} \mathbf{r}_{L}^{\sigma_{2}}$ is the position vector of a point $L \in \sigma_{2}, \delta_{2}=r_{w 2} \psi_{2}$ tg γ is a displacement along the surface axis $o_{2}, r_{w 2}$ is the radius of the rolling cylinder, γ is the helix angle on the rolling cylinder and r_{S}, r_{K}, ϕ, χ are geometric parameters. The conjugate surface σ_{3}, which is an envelope of the creating surface σ_{2}, is given by two equations

$$
\begin{equation*}
{ }_{R} \mathbf{r}_{L}^{\sigma_{3}}={ }_{R} \mathbf{r}_{L}^{\sigma_{2}} \wedge \mathbf{n}_{L} \cdot \mathbf{v}_{L_{32}}=0 \tag{2}
\end{equation*}
$$

where ${ }_{R} \mathbf{r}_{L}^{\sigma_{2}}$ is the position vector of a point $L \in \sigma_{3}$ in the basic coordinate system R, \mathbf{n}_{L} is the normal vector of a common point $L \equiv L^{\sigma_{2}} \equiv L^{\sigma_{3}} \equiv C$ and $\mathbf{v}_{L_{32}}$ is the vector of the relative velocity in the point L. Using transformation matrices the first equation (2) can be written as

$$
\begin{equation*}
R_{3} \mathbf{r}_{L}^{\sigma_{3}}=\mathbf{T}_{R, R_{3}} \mathbf{T}_{R_{20}, R} \mathbf{T}_{R_{2}, R_{20}} R_{2} \mathbf{r}_{L}^{\sigma_{2}} \tag{3}
\end{equation*}
$$

Substituting (1) to (3) we obtain

$$
{ }_{R_{3}} \mathbf{r}_{L}^{\sigma_{3}}\left(\psi_{2}, \varphi_{2}, \chi\right)=\left[\begin{array}{c}
r_{S} \sin \left(\phi+\varphi_{2}+\varphi_{3}+\psi_{2}\right)-r_{K} \sin \left(\chi+\varphi_{2}+\varphi_{3}+\psi_{2}\right)+a_{w} \sin \varphi_{3} \tag{4}\\
r_{S} \cos \left(\phi+\varphi_{2}+\varphi_{3}+\psi_{2}\right)-r_{K} \cos \left(\chi+\varphi_{2}+\varphi_{3}+\psi_{2}\right)+a_{w} \cos \varphi_{3} \\
\delta_{2} \\
1
\end{array}\right] .
$$

The second equation (2) represents condition of perpendicularity of the normal vector \mathbf{n}_{L} and the vector of the relative velocity $\mathbf{v}_{L_{32}}$ in the contact point $L \equiv C$ of the surfaces σ_{2} and σ_{3}. The equation can be rewritten, in the case that the profile p_{2} is created by an arc of a circle, into form

$$
\begin{equation*}
\left(i_{32}+1\right) r_{K} \sin (\chi-\phi)+a_{w} \sin \left(\varphi_{2}+\chi+\psi_{2 L}\right)=0 \tag{5}
\end{equation*}
$$

where a_{w} is a distance between axes o_{2}, o_{3} and $i_{32}=\varphi_{3} / \varphi_{2}$ is a gear ratio. The equations (4) and (5) represent the surface σ_{3} meshing with the surface σ_{2}. Both surfaces take the contact in a curve.

4. Rotors under operate state

An undeformed position of the rotors in the basic coordinate system $R \equiv(\mathbf{i}, \mathbf{j}, \mathbf{k})$, Fig. 7, is described with relations $\mathbf{r}_{O_{3}}=[0,0,0]^{\top}, \mathbf{r}_{O_{2}}=\left[0, a_{w}, 0\right]^{\top}$ and $\mathbf{v}_{3} \equiv \mathbf{v}_{2}=[0,0,1]^{\top}$ where \mathbf{v}_{i} is the unit vector of the rotor axis. The deformed position of the axes is caused by force and temperature loading of the housing and leads to a screw displacement of the axes. The skew arrangement is realized by following way, Fig. 8. The axis O_{3} of the main rotor is fixed and

Fig. 8 Determination of contact point of profile p_{3}^{Δ} in cross section τ_{2}^{Δ}
new, deformed, positions of axes $O_{2}^{\Delta}, O_{3}^{\Delta}$ are inserted in the axis O_{2}. Then the deformed position σ_{2}^{Δ} with the axis o_{2}^{Δ} represents a displacement of both surfaces. The displacement of the axis O_{2} to the position o_{2}^{Δ} is given, Fig. 8, by the vector $\boldsymbol{\Delta}_{2}=[2.8053,28.7575,3.4650]^{\top} \mathrm{mm}$, which determines a shift of the point O_{20} to the position O_{20}^{Δ}, and the unit vector $\mathbf{v}_{2}^{\Delta}=\left[-1.5283 \cdot 10^{-5}, 3.7011 \cdot 10^{-5}, 0.9999\right]^{\top}$ of the axis o_{2}^{Δ} for the first time level $I\left(\varphi_{3}=0^{\circ}\right)$. Time alternation of the vector $\Delta_{2}(t)$ and unit vector $\mathbf{v}_{2}(t)$ of the axis O_{2}^{Δ} is shown in Fig. 9 where the individual time levels I \div IV are marked.

Fig. 9 Time displacement of point O_{2} and vector of axis O_{2}^{Δ}

Contact point of surfaces σ_{3} and σ_{2}^{Δ} we obtain using a set of cross sections τ_{2}^{Δ} that give the set of separate single profiles p_{2}^{Δ} and p_{3}^{Δ}. Each of the profiles p_{2}^{Δ} rotates about the axis o_{2}^{Δ}, position of the surface $\sigma_{3}=\left\{p_{3}^{\Delta}\right\}$ is fixed, until it takes a contact with corresponding profile p_{3}^{Δ}. From the set of contact points $X_{j}, j=1 \div n$, of the profile p_{2}^{Δ} and p_{3}^{Δ}, the contact point $L \equiv C$ of surfaces σ_{3} and σ_{2}^{Δ} creates only this one that fulfils the condition $\varphi_{2}^{\tau}=\min \left\{\varphi_{2 j}^{\tau}\right\}$, where j denotes a cross section by the plane τ_{2}^{Δ}, Fig. 8. In the contact point the normal of both surfaces must be coalesced, so the condition

$$
\begin{equation*}
\mathbf{n}_{L}^{\sigma_{2}^{A}} \times \mathbf{n}_{L}^{\sigma_{3}}=\mathbf{0} \tag{6}
\end{equation*}
$$

must be fulfiled. Determination of the contact point between the profile p_{2}^{Δ} and p_{3}^{Δ} is made using a tangent m to the circle $k_{E}: O_{20}, r_{E}$, which originate by a rotary motion around the axis o_{2}^{Δ}, where $E=\left\{L_{j}\right\}$ is a chosen point of the profile p_{2}^{Δ}. Parametric equation of the tangent m to a circle k_{E} is given with equation

$$
\begin{equation*}
\mathbf{r}_{K}=\mathbf{r}_{E}+\mathbf{m} \lambda \tag{7}
\end{equation*}
$$

where \mathbf{m} is the unit tangential vector of the tangent m and λ is a searched parameter. The profile p_{2}^{Δ} is gradually turned, an angle φ_{2}^{τ}, until an equality $E \equiv X$ i.e. $\overline{Y^{N} E} \wedge \overline{Y^{i} Y^{N}}=0$ takes place. Then $Y^{N} \equiv X$ is a contact point of profiles p_{2}^{Δ} and p_{3}^{Δ}. This algorithm is applied on all couples of curves $p_{2}^{\Delta} \in \sigma_{2}^{\Delta}$ and $p_{3}^{\Delta} \in \sigma_{3}^{\Delta}$. Profiles of considered tooth surfaces in the frontal section for $\varphi_{30}=0^{\circ}$ are shown in Fig. 10. Curves of the creating profile of the gate

Fig. 10 Profiles of conjugate tooth surfaces rotor are arcs of the circle k_{1}, k_{3}, k_{7} and k_{11}, arc of the trochoid k_{5} and the straight line k_{9}. A tooth profile of the main rotor consists of the curve $k_{2}, k_{4}, k_{8}, k_{10}, k_{12}$, which are envelopes of mentioned creating curves of the gate rotor. For contact analysis the meshing parts of profiles, which are defined by the curves k_{7}, k_{9} and k_{11} on the gate rotor and the conjugate curves k_{8}, k_{10} and k_{12} on the main rotor, are considered. For an analysis of the contact of tooth surfaces $\sigma_{2}^{\Delta}, \sigma_{3}$ during an operating cycle, which is given by a turning about one tooth pitch of the main rotor, the domain of definition of an angular displacement of the main rotor is $\varphi_{3} \in\left\langle 0^{\circ}, 72^{\circ}\right\rangle$.

Displacement of the contact point C of p-th pair of teeth on tooth surface σ_{3} of the main rotor, depending up time

Fig. 11 Displacement of contact point of p-th pair of teeth on tooth surface of main rotor
level, is shown in Fig. 11. There ${ }_{p} C_{1}$ is a point in which a contact of p-tth pair of tooth surfaces starts. The point ${ }_{p} C_{2}$ determines the position in which the contact point conform to starting position of both surfaces, Fig. 10, by the surface creating. The point ${ }_{p} C_{3}$ determines a location in which the contact point C over step to $p+1$ pair of surfaces.

5. Consequences

A change over a curve contact to contact at a point causes that a force transformation between rotors takes place at the point and not at a curve [3]. This fact is more important than a negligible difference between transmitted force effects. Already a small displacement of the rotor axes from parallel to skew position causes a significant increasing of a value of the normal force acting between tooth surfaces. Other consequence of a change of a contact character comes to a deviation of the gear ratio. Tooth surfaces σ_{2}, σ_{3}, which contact mutually in time t at a point C, have in this point common normal line n, Fig. 12. In the contact point following relations

$$
\begin{equation*}
\mathbf{n} \cdot \mathbf{v}_{32}=0 \wedge \mathbf{n} \cdot \mathbf{v}_{3}=\mathbf{n} \cdot \mathbf{v}_{2} \tag{8}
\end{equation*}
$$

have to be fulfilled. After substituting relation

$$
\begin{equation*}
\mathbf{v}_{3}=\boldsymbol{\omega}_{3} \times\left(\boldsymbol{\lambda}_{3}+\mathbf{K}_{3}+\boldsymbol{\mu}_{3}\right), \quad \mathbf{v}_{2}=\boldsymbol{\omega}_{2} \times\left(\boldsymbol{\lambda}_{2}+\mathbf{K}_{2}+\boldsymbol{\mu}_{2}\right) \tag{9}
\end{equation*}
$$

into the equation (8), multiplying and arrangement we can a momentary transmission ratio

Fig. 12 Determination of instantaneous gear ratio

determine as follows

$$
\begin{equation*}
i_{32}=\frac{\omega_{3}}{\omega_{2}}=\frac{\kappa_{2}}{\kappa_{3}} \frac{\sin v_{2}}{\sin v_{3}} \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\sin \nu_{2}=\frac{\mathbf{n} \cdot \boldsymbol{\omega}_{i} \times \mathbf{K}_{i}}{\omega_{i} \kappa_{i}} \tag{11}
\end{equation*}
$$

A graphic vizualization of the real gear ratio is shown in Fig. 13.

Conclusion

Heat and force loading of screw machines causes a distortion of their housing. In consequence of this deformation a parallel position of rotor axes changes into a skew position. An originally curve contact of tooth surfaces changes into a contact at a point. The change brings a local great contact loading of tooth surfaces and a deviation from the gear ratio. These influences induce probably a generation of operate vibration.

Acknowledgements

The work has been supported by the research project MSM 4977751303.

References

[1] Kameya, H., Aoki, M., Nozawa, S.: Three-dimensional curvature analysis on screw rotor and its applications. Proceedings of the International Conference on Compressors and their Systems 2005. London, John Willey \& Sons, LTD, London 2005, pp. 467-474
[2] Stosic N. \& Smith I. K. \& Kovacevic A.: Screw Compressors. Springer Verlag. Berlin, Heidelberg, New York 2005
[3] Švígler J., Machulda, V., Siegl, J.: Deformation of Screw Machine Housing under Force Field and its Consequences. VDI Berichte Nr. 1932 Schraubenmaschinen 2006. Dortmund 2006, pp. 377-388
[4] Švígler J.: Incorrect contact of screw machine rotors. Proceedings of the International Conference on Compressors and their Systems 2005. London, John Willey \& Sons, LTD, London 2005, pp. 3-12
[5] Švígler, J., Rinder, L.: Temperaturdeformation des wassereingespritzten, Schraubenkompressors. Schraubenmaschinen Nr. 13, Dortmund 2005, pp. 17-36
[6] Rinder, L., Moser, I.: Untersuchung der Olverteilung in den Arbeitsräumen nasslaufender Schraubenkompressoren. VDI Berichte Nr. 859. VDI Verlag, Düsseldorf 1990

