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Abstract 

Screw compressors are very common in industry and their torsional vibration behavior is 

very important. When this issue is neglected in the design it can lead to torsional resonance 

in the machine during operation. This is especially true if the structural integrity of the 

machine does not take this into account in the design. This phenomenon has been reported 

in most of these machines and the excitation or modulation is usually provided by the drive. 

It can lead to high torque peak fluctuation in the drive shaft and in the worst case to fatigue 

failure. Its prevention has to be taken into consideration during the construction of the 

machine. It is important to find out how the internals of such machines respond to torsional 

vibration modes and whether their modification can shift such modes. 

This paper presents torsional vibration analyses of screw compressors, which are designed 

oil free for mounting on trucks for year round use and tested at Gardner Denver (GD). 

Measurements at test stands and field test show that the torque peak in the drive shaft can 

fluctuate and show large values than normal. They also show that the nature of the 

excitation and hence the response of the machine depends on the drive and the excitation 

amplitude. To predict this behaviour detailed free and forced torsional models are 

developed and validated with measurement data. The latter enables the validation of the 

torque peaks obtained in measurement. The drive train configuration (branched or 

unbranched) is taken into account and a method that can handle both configurations, the 

Holzer method, is used. Sensitivity analyses of inertias and stiffness is performed and 

reported. Based on this the weakest link in the drive train is identified and presented. 

  



1. Introduction 

This project was initiated as a result of changes in chassis layout to a 6x2 format for the 

mobile tanker industry. The compressor is aimed at the dry bulk market which is currently 

supported by GD XK and BL series machines. Due to the recent changes in chassis layout 

these existing technologies cannot be packaged inboard on the tractor unit for direct drive 

applications (See Figure 1). The new compressor design will replace these existing 

technologies on the new chassis format. However, during initial test the machine is 

exhibiting vibration when it is run with an electric motor and a diesel engine on test cells at 

GD. The same is true when the machine is tested on a truck. In all the cases, a significant 

torque increase is observed at a critical running speed of the compressor. In addition to the 

torque peak, the compressor shows lateral vibration and an increase in noise levels. The 

compressor is powered on the truck using a power take off (PTO), which is a mechanism 

attached to a motor vehicle engine that supplies power to a nonvehicular device, such as a 

pump or a compressor. 

 

 

 

 

 

 

 

Fig.1: Sketch of truck with mounted compressor and PTO and prop-shaft 

 

There are many sources of pulsation/vibration in compressors. Some include mechanical 

(torsional/structural), flow induced/process oscillations, speed/dynamic oscillations, 

reliability/structural integrity issues, to mention but a few. Specifically, sources of 

pulsation/vibration in screw compressors include the shape of the discharge port, the screw 

profile, the internal clearances, the internal volume ratio, over compression, and under 

compression, etc [1]. Pulsation and noise issues are encountered in practice almost on a 

daily basis. For example, Leader, et al. [2] did a review of torsional resonance cases 

encountered in industry. They discussed the practical implementation of torsional analysis 

in real machines. Various cases, for example, synchronous motors, reciprocating engines, 

compressors and pumps, variable frequency drives (VFDs) and gears are discussed. In [3], 

a VFD is identified as the source of high torsional vibration in a motor/ID fan system 

 



operating far away from the system natural torsional frequencies. Identification of this type 

of torsional resonance, which is not classical, during the design, is difficult. 

The aim of this work is to understand the sources of the torque peak fluctuation measured 

at the motor shaft and the noise in the drive train of a screw compressor. Using Finite 

Element Analysis (FEA), structural modal frequencies of the compressor housing are 

determined and validated with measurements using hammer test. The same is done for the 

compressor housing with the mountings of the electric motor. In both cases, the frequencies 

and mode shapes are close to those obtained in measurements. A field test on a truck is 

carried out in which the mounting bracket is braced to the ground to significantly increase 

the structural stiffness of the system and the frequency measured. The truck resonant 

frequency did not change. As a result, it is concluded that the resonance in the system 

cannot be structural but torsional. This motivated the work that is presented here. It is 

divided into the following: An introduction, a brief background of torsional resonance, free 

and forced torsional models development using the Holzer method for unbranched and 

branched drive trains, results and discussions and conclusion and future outlook. 

 

2. Torsional resonance background 

Drive trains consisting of rotating elements (Gears, shafts connection, etc) can exhibit 

steady state vibration and when this is the case it is possible to develop torsional models 

that can be used to predict the natural torsional frequencies of the system.  

 

 

 

 

 

 

 

 

Fig. 2: Schematic of drive train configuration with unbranching and branching 

 

This is done by assuming that each gear is a lumped mass and the shafts connecting them 

to have torsional stiffness. If the drive train is subjected to external excitation this can also 

be included and it is referred to as forced torsional vibration. The former is referred to as 

free torsional vibration. The masses are concentrated at nodal points as shown in Figs. 2(a) 

and (b). In Fig. 2(a), we do not have two or more shafts in the system branching from a 

 
(b) Branched drive train 

 

(a) Unbranched drive train 



gear point, which is a branched drive train, whereas in Fig. 2(b), a branched point is in the 

drive train. In this figure, the inertias, denoted by I and the torsional stiffness, denoted by K, 

are all speed reduced to the input shaft and so the system is referred to as an equivalent 

system. This is done by multiplying the inertia and the stiffness by the square of the overall 

transmission ratio, i. 

The general dynamic equation used for analyzing torsional systems can be written as: 

 

          T(t)θKθCθI                                (1) 

 

Where I is the inertia matrix, C is the torsional damping matrix, K is the torsional stiffness 

matrix and T(t) is the forcing torque. To determine the natural torsional frequencies of the 

system, T(t)=0. In the analysis carried out in this work, damping is neglected, which is 

known to be very small in torsional systems [4]. The inertias of the shafts and coupling are 

also neglected. The gears also have stiffness but the values are usually very large that it is 

safe to neglect them. If including it is important, a general relation can be used to estimate 

their stiffness [2]. The torsional stiffness, K, of a rotor element can be determined using 

K=GJ/L, where G is the shear modulus for the material of the rotor, J is the polar moment of 

inertia about the principal axis, which for a circular rotor can be written as πD4/32, with D 

being the shaft diameter, and L is the length of the shaft. For a hollow rotor, J is given by 

π(D0
4-Di

4)/32, where Do is the outer diameter and Di is the inner diameter. If a shaft element 

is subjected to a given torque, T, and is twisted by an angle θ rad as a result, then K=T/θ. θ 

is usually determined using FEA. 

For shaft elements connected in series, the effective stiffness, Keff, can be calculated using: 

Neff K
..........

KKK
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                       (2) 

At a given gear stage that consists of a gear wheel and a pinion or a wheel, an idler and a 

pinion, the effective or combined inertia can be determined. If Iw is the wheel moment of 

inertia, Ip the moment of inertia of the pinion and Id the moment of inertia of the idler, then 

for the case without an idler we can write: Ieff=Iw+iwp
2Ip, where iwp is the gear ratio between 

wheel and pinion (ratio of number of teeth on wheel to number of teeth on pinion=Gw/Gp). If 

the wheel is first connected to an idler and the idler to the pinion, then Ieff=Iw+iwd
2Id+iwp

2Ip, 

where Iwd=Gw/Gd. Adding an idler does not change the overall step-up between the wheel 

and the pinion. That is iwp=iwd x idp=(Gw/Gd) x (Gd/Gp)=Gw/Gp. 



2.1 Amplification factor  

If the natural angular torsional frequeny is denoted by ωn and the forced response angular 

torsional frequency by ω, then according to reference [5], we can write: 

 2n0 -1

1




                                (3) 

Plotting θ/θ0 versus ω/ωn gives three possible outcomes, namely, ω/ωn<1, ω/ωn=0 and 

ω/ωn>1. The second outcome means that the relative angular deflection is infinitely large, 

which is seldom possible in physical systems because of the presence of damping. In this 

work, we are operating on the left of the line ω/ωn=1. That is, ω/ωn<1. The ratio 
 2nωω1

1



gives an indication of the amplification of the shear stress or torque in the shaft element at 

resonance and is referred to as the amplification factor. 

 

2.2 Motor torque  

The electric motor used in this work is a 4 pole asynchronous motor. Between 1000rpm to 

1500rpm, the torque is steady with some fluctuation about the rated torque and from 

1500rpm to 1800rpm, the torque decreases. In general, ω=2πf and f=np/60, where n is the 

rotational speed of the drive in rpm and p is the number of pole pair. For a four poles motor, 

p=2, so we get ω=4πn/60. The expression for the motor torque can therefore be written as: 

 










rpmnn,πP

rpmn,αntπTT
T(t)

1500260

15001000604sin

0

01 ,                   (4) 

where T1 is the rated torque, T0 is the torque excitation amplitude, α is the phase angle and 

P0 is the rated power of the motor. T1 and T0 are obtained by using time series data from 

measurement. 

 

3. Torsional models development 

The torsional models developed are done using the Holzer method [4], [5]. It is used 

because it can handle both branched and unbranched drive trains. When the relative 

angular deflection is not critical, the matrix Eigenvalue method can be used to determine 

the natural frequencies in both cases. But when the relative angular deflection is to be 

precisely determined then the Holzer method or the transfer matrix method are used for 

branched systems [5]. This is the case because two important boundary conditions must be 

satisfied. They are as follows: At the branched point, the torque entering must equal that 

leaving and the relative angular deflection of the branches entering the junction must be 

equal at the branched point. Two cases are considered here, 



which are representative of the compressors analysed. The equivalent or reduced models 

are shown Fig. 3(a) and (b). Raw inertia values and stiffness values are used to compute 

the speed reduced inertia and stiffness depicted in the equivalent models. 

 

 

 

 

 

 

 

 

(a) Drive train of twin screw compressor, no branching (Machines MK1 and MK2) 

 

 

 

 

 

 

 

 

(b) Drive train of twin screw compressor with a single junction and branching 

(Machines MK3, MK4 and MK5) 

Fig. 3: Equivalent torsional models of twin screw compressor without and with branching 

 

MK1 is the new machine developed to replace the MK4 machine. It can be operated in both 

clockwise and counter clockwise directions. This is achieved by using an idler. The housing 

is also redesigned to enable it to fit on the 6x2 chassis of the truck. The MK2 is a variation 

of the MK1 that enables the input shaft to be off-set and by so doing reduce the input torque 

fluctuation. This is achieved by re-profiling the gear casing and the bearing carrier. The 

MK3 machine is a slight variation of the MK1 that is obtained by moving the synchronization 

gears to the drive side. Finally, the MK5 machine is the high speed version of the MK4 

machine. Its input speed range is 2300rpm to 3300rpm. All other machines have an input 

speed range of 1000rpm to 1800rpm. 

The drive train in Fig. 3(a) has two gear stages and a synchronization gear stage. N 

denotes the nodes, with N1=Electric motor, N2= Input gear stage, N3=Second gear stage, 

 
Torsional model line diagram 
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T=T0sin(ωt) 

 

 

 

 

 

 

 

Equivalent torsional model 

 

 

 

 

 

 

 

 
Torsional model line diagram 
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Equivalent torsional model 

 

 

 

 

 

 

 

T=T0sin(ωt) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



N4=Female rotor, N5=Synchronization gear stage, and N6=Male rotor. The rotors used here 

have a 3/5 lobe combination and the main drive is through the female rotor. I1=Motor inertia, 

I2=First stage gear inertia, I3=Second stage gear inertia, I4=Female rotor inertia, 

I5=Synchronization gear inertia and I6=Male rotor inertia. For the torsional stiffness, K12 is 

the equivalent stiffness of the prop-shaft and the input shaft, K23 is the equivalent stiffness 

of the shaft element connecting the first stage pinion to the second stage wheel, K34 is the 

equivalent stiffness of the element between the second stage pinion an the centre of mass 

of the female rotor, K45 is the equivalent stiffness between the centre of mass of female 

rotor and the wheel of the synchronization gear stage and K56 is the equivalent stiffness 

between the pinion of the synchronization gear and the centre of mass of the male rotor. 

Similarly, in Fig. 3(b), there are three gear stages as in Fig. 3(a) in the MK3 machine. The 

synchronization gear stage is on the drive side (Node 4) and the main drive is still through 

the female rotor. At the junction, the torque entering is distributed through both rotors. Also, 

at the junction, θ4a=θ4b. The drive trains in the MK4 and MK5 have only a single gear stage 

and a synchronization gear stage.  

Applying the Holzer method to Fig.3(b) and for the free torsional models, the relative 

angular deflections at nodes 1 and 6 are assumed to be unity. That is θ1=θ6=1. Next, we 

begin with branch “a” and compute the relative angular deflection at node 4 (denoted as 

θ4a) and then take branch “b” and also compute the relative angular deflection at node 4 

(denoted by θ4b). As boundary condition θ4a=θ4b. If this is not true, make θ6=θ4a/θ4b in order 

to make the relative angular deflections at the junction equal. Next, we move to branch “c” 

and compute the residual torque (Te) at node 5 and this must be zero. The values of the 

angular frequencies (ω) for which Te=0 are the natural torsional frequencies of the system 

[5]. The same procedure above is repeated for the model in Fig. 3(a), but with no branching 

at node 4. Both models are implemented in MathCAD. 

The forced torsional models are developed by applying the forcing torque, T, at node 2. 

Details of how the Holzer method is applied can be found in [6]. 

 

4. Results and discussions 

Results of free and forced torsional vibration are presented and this is followed by 

sensitivity analysis of the stiffness and inertia. The results and discussions are proceeded 

by the conclusions and future outlook. 

 



4.1 Free torsional vibration and validation with measurement data  

Free torsional models of MK1, MK3, MK4, and MK5 are developed and their relative 

angular deflections are compared as shown in Fig. 4. In the absence of forced torsional 

models, this enables the prediction of the natural torsional resonance frequencies and the 

torque trend in the various machines, which can be compared with the measured torsional 

frequencies and torque trend.  

 

 

 

 

 

 

 

 

 

 

Fig. 4: Mode shapes of 1st torsional mode 

 

 

 

 

 

 

 

 

 

 

Fig. 5: Measured normalized torque peak 

 

The models predictions of the relative angular deflections are: MK5>MK3>MK1>MK4 as 

presented in Fig. 4. From measurements, the torque peak trend is MK3>MK1>MK4>MK5 

(See Fig. 5). The trend is good, with the exception of MK5, which shows almost no torque 

peak at the 1X input speed. This is because the torsional mode is not excited at the IX input 

speed in this machine. Fast Fourier Transform (FFT) of the MK5 torque data shows a 

fundamental mode with maximum response at the 2X input speed (See Fig. 12). 
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Fig. 6: MK1 waterfall plot 

 

The reason for this is discussed in details under forced torsional models. Waterfall plots of 

torque (torque run-up spectrum) of the various machines showed resonance at 1X input 

speed, with the exception of the MK5. In this case, a faint line is seen at 29 Hz (1740 rpm), 

which is outside the speed range of this machine. A typical plot is shown in Fig. 6 for the 

MK1 machine. All the torques in Fig. 5 are normalized by the maximum torque measured in 

the MK3 machine. They are also measured using the same prop-shaft angle to enable 

comparison. 

The measured and predicted first mode torsional frequencies are also in good agreement 

both in trend and magnitude (See Table 1). The mode shapes shown in Fig.4 indicates that 

the entire compressor is behaving like a rigid body that is moving relative to and out of 

phase with the electric motor. This makes it possible to model the entire compressor with 

the drive as a two point mass system, thus reducing greatly the computational time required 

to determine the first torsional modal frequency. The angular frequency in this case can be 

determined using: 

 
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II

IIK
eff


                                      (5) 

Where Keff is the equivalent stiffness of the prop-shaft and the input shaft located between 

the motor and the first stage input gear, I1 is the motor moment of inertia and I2 is the 

moment of inertia of the compressor drive train. Applying this to MK1, we get a first 

torsional frequency of 23.59Hz, which is close to the value predicted in Table 1. 

A measure of the torque and hence shear stress in a shaft element is given by the gradient 

of line connecting the nodes that define that element in the drive train. That is tan(β1) or 

tan(β2). The most sensitive elements in Fig. 4 are therefore the elements connected 

between nodes 1 and 2 (That is, the prop-shaft, coupling and the input shaft). The 

maximum torque is expected to be in these elements as seen from the torque 

measurements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22Hz torsional freq. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: 1st torsional frequencies 



4.2 Forced torsional vibration results and validation with measurement data 

To enable the actual quantification of the torque and hence the shear stress in the input 

shaft and other shaft elements in the drive train forced torsional models are developed for 

the MK1 and MK2 machines. The latter machine is a slight variation of the former. In the 

latter the gear casing and bearing carrier are modified in order to offset the input shaft and 

by so doing reduce the prop-shaft angle and hence the input torque fluctuation. Comparing 

the torque peaks in MK1 and MK2 would quantify the effect of the prop-shaft angle 

reduction on torque peak. The MK1 prop-shaft angle, normalized by using the maximum 

prop-shaft angle is 1 while that of MK2 is 0.6, representing a reduction of 8° in the angle. 

The aim of the forced torsional model is to see if it can predict the torque peak reduction 

that has been captured in measurements. To develop the models curve fitting is used to 

determine the torque forcing function, T(t), using the electric motor torque time series data. 

The corresponding angular deflections in the shafts and the twisting moments are 

determined and compared with measurement data. The sampling rate of the torque time 

series data is 10kHz and a total of 10000 data points are taken at their 1X critical input 

speeds (1229rpm for MK1 and 1268rpm for MK2). The time step, ∆t=1/(Sampling 

rate)=1x10-4 s. The torque is measured at the motor shaft using a torque transducer. The 

normalized time series data of both machines is depicted in Fig. 7, with the values plotted 

for 0.5 seconds of the total time of 2 seconds and normalized by the maximum torque 

measured in the MK1 machine. In Fig. 8, an FFT plot of the measured torque in both 

machines is presented.  

 

 

 

 

 

 

 

 

Fig. 7:  Normalized torque time series (Expt. & fitted)  Fig. 8:  FFT of measured torque  

 

The power spectra density (PSD) of the torque is obtained using 20log10(Tabs), where Tabs 

is the absolute torque obtained from the FFT of the torque time series. It is normalized 

using the maximum value of MK1. In both cases in Fig. 8, maximum torque amplitude is 

occurring at the IX input speed (20.5Hz for MK1 and 21.5Hz for MK2), but the amplitude of 

  



MK1 is higher than MK2, as expected. The normalized torque forcing function of MK1 and 

MK2 are Tn(t)=-0.404sin(128.805t+π/3)+0.3956 and Tn(t)=–0.3394sin(135.088t)+0.3951, 

respectively. The mode shapes obtained from the MathCAD implemented forced torsional 

models are shown in Fig. 9. From this figure, it can be seen that the angular twisting in MK1 

is more severe than in MK2 due to the larger torque fluctuation in the former. The prediction 

of the actual torques in each shaft section makes it possible to determine the shear stress 

using GTR/ , where  is the shear stress and R the shaft radius. 

 

 

 

 

 

 

 

Fig. 9:  Mode shapes (Predicted)   Fig. 10:  Measured normalized torque  

 

The model predicts a reduction of 124Nm in torque amplitude while the measurement is 

predicting a reduction of 122Nm in torque (See Fig. 10), which gives a percentage error of 

1.6%. When the time series of torque is taken at non-critical speeds (for example, 

1800rpm), the 2X input speed dominates (See Fig. 11). The 2X input speed torque peak is 

present at all speeds because the input shaft is connected to the prop-shaft via a coupling 

and the torque as a result cycles twice per shaft revolution. This 2X input speed peak is 

also present in the noise and vibration data of all the machines. The torque functions 

obtained also indicate that we have torque reversal (negative torque) at the 1X input speed, 

indicating that the compressor is attempting to drive the electric motor. This situation is 

undesirable as it can lead to backlash at the gears and gear noise and eventual damage of 

the machine, if it is left unchecked. To prevent this, some applications use springs at the 

input shaft to smoothen the input torque. Anti-backlash gears, for example, gears loaded 

with springs can also be used. 

At a non-critical speed, for example, 1800rpm, the forcing function determined for MK1 is 

Tn(t)=0.175sin(376.99t)+0.804 and that for MK2 is Tn(t)=0.0877sin(376.99t)+0.797. In both 

cases, the torque amplitude and steady torque are normalized by the maximum torque 

measured in the MK1 machine. The forcing functions in these cases have positive torque 

amplitude, indicating there is no torque reversal at this speed. The coefficient of t in the 

general torque equation (4), ω=4πn/60, is obtained only when the input speed, n, is non-

  



critical. For example, when a non-critical speed of 1800rpm is considered, this value is 

376.99rad/s. The same value is obtained when the measured time series data is fitted to 

determine the torque function, Tn(t), given above at this speed. However, for say MK1 at 

1229rpm critical speed, you get ω=4πn/60=257.40rad/s=2X input speed and not 1X input 

speed obtained in the determined torque equation.  

 

 

 

 

 

 

 

Fig. 11:  Torque FFT of MK1 & MK2(Measured) Fig. 12:  Torque FFT of MK5(Measured)  

 

At 1800rpm ( or 30Hz) for MK1 and MK2, the 1X input speed is not excited and so machine 

is not in resonance. In Fig. 11, FFT of the torque time series data of both machines at this 

speed is presented and clearly, the fundamental frequency (dominant mode) is at 60Hz=2X 

input speed and not 1X input speed. The same is true of the MK5 machine running at 

2340rpm (or 39Hz) input speed. The FFT plot in Fig. 12 shows that the dominant frequency 

is 78.2Hz=2X input speed and not 1X input speed, thus avoiding the excitation of the first 

torsional mode. This explains why the torque peak measured in this machine is negligible 

when compared to the other machines in Fig. 5. In all the cases reported in Figs. 11 and 12, 

the torque amplitude at the IX input speed corresponds to the first sub-harmonic. 

 

4.3 Sensitivity analysis 

To determine the effect of changing the inertia (I) and stiffness (K) on the system response, 

sensitivity analyses is performed. In the case of the former, it is observed that the most 

sensitive element in the drive train is the male rotor followed by the female rotor. The mode 

shapes obtained when the raw inertia values are increased by a factor 1 to a factor 1.8 are 

shown in Fig. 13. As I is increased, the gradient, tanβ, decreases by 10% between β1 and 

β2 indicating a reduction in the relative angular deflection of the shaft element between 

nodes 1 and 2. The corresponding first mode torsional frequencies obtained are plotted in 

Fig. 14. Note that ω~1/I1/2 and f=ω/2π and so as I increases f decreases. When the inertia 

is decreased, the relative angular deflection is increased (in this case the gradient 

  



increases by 39% from β1 to β2) and the first torsional frequency increases (See Figs. 15 

and 16). 

 

 

 

 

 

 

 

Fig. 13: Mode shapes (I6 in MK1 increased) Fig. 14: 1st torsional freqs. (I6 increased) 

 

 

 

 

 

 

 

Fig. 15:  Mode shapes (I6 in MK1 decreased) Fig. 16:  1st torsional freqs. (I6 decreased) 

 

A compressor with a larger rotor mass (larger diameter) will therefore have a lower torsional 

response when compared to a compressor with a smaller rotor mass (smaller diameter). 

Sensitivity analyses of the stiffness of various shaft elements are carried out. It is observed 

that the prop-shaft stiffness has the most effect on the torsional response. In Fig. 17, the 

raw stiffness of the prop-shaft is increased by a factor 2 to 10 and the relative angular 

deflection changes as a result. The same is true of the first torsional frequencies obtained 

as in Fig. 18.  

 

 

 

 

 

 

 

Fig. 17:  Mode shapes (K12 in MK1 increased) Fig. 18: 1st torsional freqs. (K12 increased) 
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This finding is implemented by tuning the prop-shaft to a stiffness that gives a first torsional 

frequency of 32Hz. In this case, no resonance is reported as the 32Hz (1920rpm) is outside 

the input speed range. When the stiffness of only the input shaft is increased by a factor of 

2 to a factor of 10, no change in relative angular deflection is reported. The same is true of 

the other elements inside the machine (See Fig. 19). The corresponding changes in the first 

torsional frequencies are also marginal (See Fig. 20). 

 

 

 

 

 

 

 

Fig. 19: Mode shapes (K12 in MK1 increased) Fig. 20: 1st torsional freqs. (K12 increased) 

 

5. Conclusions  

Torsional analyses (free and forced) of dry screw compressors are presented. This is 

followed by sensitivity analyses of the inertia and stiffness of the elements in the drive train. 

The following conclusions can be drawn: (a) The source of torque peak increase in the 

drive train is identified as torsional and not structural. (b) The free torsional models 

developed show a good trend in relative angular deflection when compared to the torque 

measurements of MK1, MK3, and MK4. The only exception is the MK5. (c) Torque peaks 

predicted by the forced torsional models are in good agreement with those measured for 

the MK1 and MK2 machines. (d) Torque functions showed there is torque reversal at 1X 

critical input speeds (f) From the torsional stiffness standpoint, the most sensitive element 

in the drive train is the prop-shaft (g) The male and female rotors inertias in the drive train 

have more effect on the relative angular deflection. 
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